Towards the elimination of occupational cancers in the Russian Federation: cancer research for cancer prevention

International Agency for Research on Cancer
Lyon, France

Joachim Schüz
Head, Section of Environment and Radiation
Projected burden of cancer: World (2012-2030)

Assuming no change in underlying incidence

Incidence
- 2012: 14.07 million cases
- 2030: 21.65 million cases
- 53.9% increase

Mortality
- 2012: 8.20 million cases
- 2030: 13.04 million cases
- 59.0% increase
Why cancer prevention?

- Most cancers only curable in early stages
- Several cancers come with severe suffering
- Cancer treatment has severe side effects and often late effects
- Cancer treatment has high economic burden
- Reduction of the cancer burden by primary prevention
Attributable cancer risks (UK)

- Tobacco: 60,837 (19.4%)
- Unhealthy diet: 29,466 (9.2%)
- Overweight, obesity: 17,294 (5.5%)
- Alcohol: 12,458 (4.0%)
- Occupation: 11,494 (3.7%)
- UV radiation: 11,097 (3.5%)
- Infections: 9,745 (3.1%)
- Ionising radiation: 5,807 (1.8%)
- Lack of physical exercise: 3,275 (1.0%)
- Low reproduction/breastfeeding: 2,699 (0.9%)
- Post-menopausal hormones: 1,675 (0.5%)

Total: 52.6%
Why cancer prevention in occupational and environmental health?

• Several carcinogens at the workplace or in the environment have been identified and most of them are modifiable risk factors.

• ILO* estimate: >650,000 cancer deaths per year worldwide due to occupation (50-75% of them due to lung cancer)

* International Labor Organization
Occupational cancers (1)

- Human (epidemiology) and toxicology research and exposure characterisation complementing each other
- Global evidence synthesis for classification of carcinogenicity, e.g. by IARC Monograph Program
- Definition of global prevention framework

- Absolute cancer burden must account for local situation
 - baseline cancer risk and competing risks
 - work situation (exposure levels, protection measures)
- Preventive action to be tailored to local situation
Occupational cancers (2)

- Majority of research from North America/Western Europe
- Situation in Russia
 - Very large work force in various large scale industries
 - Good documentation of working situation and exposures
 - Distinct exposures by type, duration and levels
- Utilise for:
 «Russian Research Initiative into Occupational Cancer»
- Essential for prevention program to eliminate occupational cancer in Russia
- Informative on global scale for occupational cancers
Russian Research Initiative on Occupational Cancer - Initial steps -

I) Registry of occupational cancers

II) Multi-site case-control study on occupational risk factors

III) Prospective follow up of chrysotile workers
Registry of occupational cancers

- Population based cancer registries
- Create legal framework for record linkage between registries
- Linking workforces with cancer registry and vital status for registry of potential occupational cancer cases
- Notification of cancer cases in workforce accepted as being cancer case due to their occupation
Multi-site case-control study (1)

Launched in Rostov oblast because

- Availability of population based cancer registry
- Various industries with known or potential carcinogenic exposures
- Model region for developing core protocol for Russian Federation

Cases:
Multi-site three year incident diagnosis of cancers of the lung, head and neck, bladder, and stomach

Controls:
Frequency-matched recruited through local poli-clinics
Multi-site case-control study (2)

Exposure assessment:
- Questionnaire / Interview (Lifestyle, occupation)
- Workbook
- Residential and occupational history

Potential industries:
- Coal mining, agricultural, heavy metal, textile

Partnership:
RI OH, IARC, Occupational Health Center Rostov, Cancer Registry at Oncology Dispensary, Poli-Clinics
Prospective follow up of chrysotile workers

- Enrolment of world-wide largest cohort of workers in chrysotile mines and factories in Asbest (N=37000)
- Largest female workforce of chrysotile workers
- Retrospective study of workforce 1975-2010 followed up for cancer mortality

- Prospective follow up
 1) Cancer incidence
 2) Individual co-factors
 3) Biological samples

=> Presentations by E. Kovalevskiy and D. Hashim
Cancer prevention? NOW

Mesothelioma mortality in Germany

Eastern part

Western part

All ages
Ages 80+
Ages 65-79
Ages <65

Schonfeld et al., Cancer Causes Control, 2014
Conclusions (1):
Towards the elimination of occupational cancers in the Russian Federation

• Cancer Prevention Potential:
 Between 1 in 10 to 1 in 20 cancers are currently due to occupational (modifiable) exposures

• Several workplace agents established as carcinogenic

• As cancer develops slowly prevention needs to be implemented as early as possible

• Russia has longstanding tradition in successful protection of workers health and respective medical infrastructure and networks operate very well
Conclusions (2):
Towards the elimination of occupational cancers in the Russian Federation

• Epidemiology to optimise and monitor and explore the unknown:
 Russian Research Initiative into Occupational Cancer to:
 1) inform preventive measures adapted to local situation
 2) enhance global knowledge on occupational cancer

• Utilise wealth of existing data and start targeted epidemiological studies on occupational cancers with:
 - Registry of occupational cancers
 - Multi-cancer case-control study
 - Continuation of prospective follow up of chrysotile workers
Acknowledgements

FSBSI Izmerov Research Institute of Occupational Health, Moscow, Russian Federation
Evgeny Kovalevskiy
Igor Bukhtyarov

International Agency for Research on Cancer (IARC), World Health Organisation’s cancer research agency, Lyon, France
Joachim Schüz
Ann Olsson
Christopher P Wild